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Abstract. Effects of spatial inhomogeneity in the one-dimensional quantum sine–Gordon
model are treated by use of the variational Gaussian wave-functional method. The properties of
the ground state and the phase diagram of the system are investigated in detail.

The one-dimensional (1D) quantum sine–Gordon system has been widely used to investigate
the nonlinear excitation in condensed matter physics. Since impurities or defects are usually
present in the material samples, the 1D space will no longer be homogeneous, this effect
should be considered in the problem of nonlinear excitations introducing a local sine–
Gordon model. The physical sense of this model emerges in its connections with the
Kondo problem [1] and the spin-boson problem with ohmic dissipation [2] after the well
known bosonization procedure of the fermi operators has been performed. In this paper we
approach this problem with the Gaussian wave-functional technique which has been applied
successfully in quantum field theory [3–5]. With this technique we study the properties of
the ground states and derive the phase diagram of the system.

The Hamiltonian of the local sine–Gordon model is

H =
∫ {

1

2
π2 + 1

2
(∂xφ)2 − vδ(x)

β2
(cosβφ − 1)

}
dx (1)

whereφ(x) andπ(x) are the bose field and its canonical conjugate momentum, respectively,
and the potential term withδ(x) describes the spatial inhomogeneities due to the impurities
[6].

In solving the eigenequation of the Hamiltonian (1), we appeal to the variational
approach with a trial Gaussian wave functional

9(φ, 8, p, f ) = Nf exp

{
i
∫

P(x)φ(x) dx

−1

2

∫
[φ(x) − 8(x))f (x, y)(φ(y) − 8(y)] dx dy

}
(2)

where8(x), P(x), andf (x, y) are variational parameters. The expectation value of the
Hamiltonian (1) with respect to the wavefunction (2) has been given in [3–5]

E =
∫ {

1

2
P 2 + 1

2
(∂x8)2 − vδ(x)

β2
(Z cosβ8 − 1) + 1

4
f (x, x)

}
dx

+1

4

∫
δ(x − y)

∂2f −1(x, y)

∂x∂y
dx dy (3)
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where

Z = exp{−β2f −1(x, x)/4} (4)

andf −1(x, y) denotes the inverse off (x, y). In the case of the local sine–Gordon model,
the eigenstates are to be variationally imitated by those of a local quadratic Hamiltonian
model, the variational functions take the form [7]

f (x, y) =
∑
kl>0

klul(x)ul(y) (5)

f −1(x, y) =
∑
kl>0

1

kl

ul(x)ul(y) (6)

where ul(x) is a set of complete orthogonal functions from the eigenequation with the
boundary condition,ul(± 1

2L) = 0,

Gul =
[
− d2

dx2
+ 2mδ(x)

]
ul(x) = k2

l ul(x). (7)

There are two solutions for a givenkl , explicitly

ul(x) =
√

2

L
sinklx or

√
2

L − (1/kl) sin 2δl

cos(kl|x| + δl) (8)

whereδl = − tan−1(m/kl), m being the variational parameter.
Obviously, the state with vanishing momentum and constant8(x) = 8(0) has the

lowest energy:

E = 1

2

∫
f (x, x) dx − v

β2
[Z(m) cosβ8(0) − 1] − m

2
f −1(0, 0) (9)

whereZ is replaced by its value at the origin, which depends onm via f −1(0, 0)

Z(m) = exp{−β2f −1(0, 0)/4} (10)

and in the continuum limit

f −1(0, 0) = 2

L

∑
kl>0

kl

k2
l + m2 + 2m/L

= 1

π

∫ 3

0

k

k2 + m2
dk = 1

2π
ln

m2 + 32

m2
. (11)

3 is the ultraviolet cut-off of the momentum. Minimizing the energy of equation (9) with
respect tom givesm as a function of8(0) by the equation

m = 1
2vZ(m) cosβ8(0) (12)

where use was made of the relation (Hellmann–Feynman theorem)

d

dm

∫
f (x, x) dx =

∑
kl>0

1

2kl

d

dm
〈ul|G|ul〉

=
∑
kl>0

1

2kl

〈
ul

∣∣∣∣ dG
dm

∣∣∣∣ ul

〉
= f −1(0, 0). (13)

Correspondingly, the effective potential is defined as

V(8(0)) = E(8(0), m(8(0))). (14)

The minimum condition of vanishing derivative with respect to8(0) is

dV
d8(0)

= 2m

β
tanβ8(0) = 0 (15)
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then8(0) = (2π/β)n with n integers, and it implies that the vacuum of the quantum local
sine–Gordon model is degenerate; however, one can prove there is no tunnelling effect
between these vacuum states and, as a result, we specialize the vacuum sector8(0) = 0,
and define the renormalized massµ as

µ = 1

2

d2V
d28(0)

∣∣∣∣
8(0)=0

= 1

2
vZ(µ). (16)

The ground state is stable only in the case ofE(µ) being a local minimum, so the
stability condition is constrained by

d2E

d2µ
= 32

2π(µ2 + 32)µ

[
1 − β2

4π

32

µ2 + 32

]
> 0 (17)

and the critical condition then follows as

1 − β2

4π

1

1 + µ23−2
= 0. (18)

By eliminating µ3−1 in equations (16) and (18), one can obtain the boundary of phase
separation in the parameter plane (v3−1, γ = β2/4π ) as

v3−1 = 2γ γ/2

(γ − 1)(γ−1)/2
. (19)

The boundary consists of a vertical line (06 v3−1 6 2, γ = 1) and a monotonous critical
line of equation (19) which behaves as 2e1/2γ 1/2 when γ ∼ ∞. At the vertical line, the
renormalized massµ vanishes from the left, announcing a continuous phase transition. The
critical line of equation (19) is connected with the first-order phase transition, andv3−1 = 2,
γ = 1 refers to the tricritical point.

Figure 1. Phase diagram of the local sine–Gordon model.a is the critical line andb the
equilibrium line.

In region I (γ < 1) of figure 1, there exist only the states withµ > 0 at whichE(µ)

reaches its absolute minimum. Between the line ofγ = 1 and the critical line, the energy
of the stateE(µ) reaches a local minimum, which may be higher or lower than that of the
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stateE(0) with µ = 0. For determining the absolute minimum, we further divide the phase
diagram into subdivisions by the equilibrium condition

E(µ) = E(0) (20)

namely,

γ = tan−1 µ3−1

µ3−1
. (21)

Together with equation (16), the equilibrium line can be determined in the parameter plane.
Across this line from II to III, the state withµ > 0 goes from a stable state to a metastable
state. In region IV, the energy reaches its absolute minimum only at the value ofµ = 0, the
massive ground state is unstable. Finally, we would like to mention that the transition point
for 3 ∼ ∞ is β2 = 4π ; however, the corresponding result by Coleman isβ2 = 8π for the
ordinary sine–Gordon model. One would speculate if the transition point would interpolate
between these two exact values when the delta function in the interaction term is replaced
by some type of smooth distribution.

It is also interesting to connect the phase diagram to the low-temperature behaviour
of the Kondo model and further to the quantum tunnelling system. It is well known that
the Kondo model with anisotropic exchange can be approximately mapped to a scalar field
model via the bosonization technique [8, 1]. The relations between the parameters are
β = √

4π(1 − ρJ‖/2) and α/β2 = J⊥/4π . Thus the ferromagnetic exchange,J‖ < 0 or
β2 > 4π , corresponds to the massless regime, where the cosβφ(0) is irrelevant and the
weak coupling picture holds. On the other hand, the antiferromagnetic exchangeJ‖ > 0
corresponds to the massive regime, the ground state is strongly correlated and the scaling
transformation flows to infinity. In the frame of the Gaussian wave-functional approach,
the renormalized mass is given by equation (16).
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